Environmental Product Declaration (EPD) Report

Report No: RepLCA202310007

Polynexx Industries (Yancheng) Co., LTD

1 m² 2.5 mm Futura PVC Free Resilient Tile Flooring

(Type: 2.5 mm)

As per ISO 14025 EN 15804

Verification Company: Ti Certification (Shanghai) Co., Ltd. Address: 7th Floor, West Mansion, 767 Changshou Road,

Shanghai, China

Website: https://www.titcgroup.com/en

	Ti Certificatio	n (Shanghai)	Co., Ltd.		
Verification Company Name,	7th Floor, We	st Mansion,	767 Changshou Road,		
Address & Website	Shanghai, China				
	https://www.ti	tcgroup.com	/en		
	Polynexx Ind	ustries (Yand	heng) Co., LTD		
Manufacturer Name & Address	No.3 Chunpu	Road, Xingo	ou Auto Parts Industrial		
	Park, Funing	County, Yan	cheng, Jiangsu Province		
Declared Product & Functional	Futura PVC F	ree Resilien	t Tile Flooring		
	(Type:2.5 mm	1)			
Unit	1 m ²				
Product Category	Building mate	erial			
Reference PCR	1				
System Boundary	Cradle to Gat	:e			
Time Period for Data Collection	01/02/2023	31/3/2023			
Product Service Life (If	,				
Applicable)	/				
Main Markets of Product	Netherlands				
LCA Software	SimaPro 9.4.0.1				
	This declaration was independently verified in				
	accordance v	vith ISO 1402	25: 2006 and EN 15804		
Conclusion	☑ External □ Internal				
	This life cycle	assessmen	t was independently		
	verified in accordance with ISO14044:				
Verification Team	Team Leader	: Dongmei Li	u		
vermoation ream	Team member	er(s): Zhichad	He		
			Signatory:		
Technical Review	Name: Sarah	Chan	BA 2013		
recillical Neview	Date: 28.09.2	2023	10000		
Revision Number	1.0	Date:	28.09.2023		

Limitation

<u>Accuracy of Results:</u> This data is based on information provided by the product manufacturer. EPDs regularly rely on estimations of impacts; the level of accuracy in estimation of effect differs for any particular product line and reported impact.

<u>Comparability:</u> EPDs come from different programs may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However variations and deviations are possible. Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

Table of Content

Product Definition and Information	2
1.1. Description of Company/ Organization	2
1.2. Report Purpose	2
1.3. Product Specification	2
1.4. Material Composition	3
1.5. Product Manufacturing	3
Life Cycle Assessment Background and Scenarios	4
2.1. Functional Unit	4
2.2. System Boundary	4
2.3. Cut-off Criteria	4
2.4. Data Sources	5
2.5. Data Quality	6
2.6. Allocation	7
2.7. Comparability	7
3. Life Cycle Assessment Results	8
3.1. Description of the System Boundary	8
3.2. Life Cycle Impact Assessment Results	8
4. Life Cycle Assessment Interpretation	12
5. References	12

1. Product Definition and Information

1.1.Description of Company/ Organization

Polynexx Industries (Yancheng) Co., LTD. is located at No.3 Chunpu Road, Xingou Auto Parts Industrial Park, Funing County, Yancheng, Jiangsu Province. The company has a registered capital of 5 million Chinese yuan and covers a total land area of 6,500 m² with a total building area of 3,400 m². It is a production-oriented enterprise that integrates research and development, manufacturing, sales, and services. The company boasts advanced equipment and production capabilities and primarily focuses on the research and production of plastic flooring that complies with European and American standards.

1.2.Report Purpose

The purpose of this report is to assess the environmental impact of the life cycle process of the 1 m² Futura PVC Free resilient tile (Type:2.5 mm) produced by Polynexx Industries (Yancheng) Co., LTD. at the chosen production location at No.3 Chunpu Road, Xingou Auto Parts Industrial Park, Funing County, Yancheng, Jiangsu Province. The research findings will be beneficial for Polynexx Industries (Yancheng) Co., LTD. to gain insights into the environmental impact throughout the product's life cycle, helping the company identify potential opportunities to reduce environmental impact and effectively communicate with consumers.

1.3. Product Specification

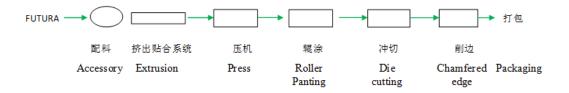
The 1 m² Futura PVC Free Resilient Tile Flooring (Type:2.5 mm) is commonly used in commercial, light commercial, and residential interiors. Product information is show in Table 1 below.

Table 1 Product information

Product Name	1 m² Futura PVC Free Resilient Tile Flooring
Model/Type	2.5 mm
Product Technical Data	Product thickness: 2.5 mm
(If Applicable)	Weight: 4.68kg
Product Appearance	
Diagram	

1.4. Material Composition

Almost all the raw materials of the product are sourced from China. The weight ratio of raw materials per product are listed in Table 2 below.


Table 2 Main Product Components per Functional Unit

Product Components	Weight Ratio
Biobased Polyester	16.82%
Modified Functional Resin	15.76%
Ethylene Copolymer Resin	8.71%
Stone Powder	43.53%
Agricultural Waste Such as Straw	2.80%
Soybean Oil	1.68%
PET Membrane	10.52%
Paint	0.17%

1.5. Product Manufacturing

The product production follows the flow diagram shown in

Figure 1.

Figure 1 Diagram of Production Process

2. Life Cycle Assessment Background and Scenarios

2.1.Functional Unit

The declaration refers to the functional unit of 1 m² installed Futura PVC Free Resilient Tile flooring (Type: 2.5 mm) covering.

Table 3 Functional Unit Information

Item	Information
Functional Unit	1 m ²
Mass (If Applicable)	4.68 kg

2.2.System Boundary

The system boundary for the EPD is "cradle to gate" . As such, the analysis includes the following modules:

- Raw material acquisition stage: modules A1 to A2
- Production stage: module B
- Distribution stage: module C

Each module includes provision of all relevant materials, products and energy.

Figure 2: System Boundary (The red box represents the system boundary for the product life cycle in this report)

2.3. Cut-off Criteria

The Cut-off criteria are used as follows:

- Cut-off criteria based on the weight ratio of each raw material input to the product's
 weight or the total process input weight. When the weight of ordinary materials is less
 than 1% of the total product's weight, or high-purity components is less than 0.1% of the
 total product's weight, the upstream production data for that material can be cut off. The
 total weight of materials cut off can not exceed 5%.
- The upstream production data of low-value waste materials used as raw materials, such as fly ash, slag, straw, household waste, etc., can be cut off.
- In most cases, assets such as production equipment, buildings, can be cut off.
- The widely recognized emission data within the selected types of environmental impact should not be cut off.

As per the criteria listed above, the following material has been cut-off:

Agricultural waste such as straw.

2.4. Data Sources

In accordance with the requirements of the EPD (Environmental Product Declaration) standard, an EPD analysis working group conduct an EPD analysis for the considered product. The team conducted research and collected some primary data, including the company's production records and energy consumption records, to ensure the completeness and accuracy of the data.

As a general rule, specific data derived from specific production processes or average data derived from specific production processes were the first choice as a basis for calculating LCA results.

For life cycle modeling of the considered products, the SimaPro software system for Life Cycle Engineering was used to model the product systems considered in this assessment. All relevant background datasets were taken from the SimaPro software database (Ver 9.4.0.1). The datasets from the SimaPro database are documented in the online documentation.

The data sources used for the life cycle assessment are listed in Table 4 below.

Table 4 Data Sources

Input		Items	Data Sources		
	Energy Use	Electricity	Invoice		
		Biobased polyester	Raw material requisition form		
Primary		Modified functional resin	Raw material requisition form		
Data		Ethylene copolymer resin	Raw material requisition form		
	Raw Material	Stone powder	Raw material requisition form		
		Soybean oil	Raw material requisition form		
		Pet membrane	Raw material requisition form		
		Paint	Raw material requisition form		
	Raw		Based on the manufacturer's		
	Material	Lorry 3.5t, euro6	address, collect distance data		
Secondar	Transport		using online maps		
y Data	Emission	Electricity EF	Database and literature resources		
	Factor	Raw material acquisition EF	Database and literature resources		
	1 40101	Transport EF	Database and literature resources		

Ou	tput	Items	Data Sources		
	Product	1 m ² Futura PVC Free Resilient	1		
Primary	Troduct	Tile Flooring	,		
Data	Solid	Defeative products	Wests weighting form		
	Waste	Defective products	Waste weighting form		
			Based on the dock address,		
		Lorry>32t, euro 6	collect distance data using online		
	Product		maps		
Secondar	Distribution		Based on the dock address,		
y Data		Freight, container ship	collect distance data using online		
			maps		
	Emission	Distribution EF	Database and literature resources		
	Factor	DISHIDUHUH EF	Database and illerature resources		

2.5.Data Quality

A variety of tests and checks were performed throughout the project to ensure high quality of the completed LCA checks included an extensive review of project-specific LCA models as well as the background data used.

Temporal Coverage

Foreground data represent a continuous 2-month period from 01.02.2023 to 31.03.2023. Manufacturers were permitted to choose to report for this data collection period to facilitate data collection. Background datasets area based on data from SimaPro software database (Ver 9.4.0.1).

Geographical Coverage

Proxy datasets were used as needed for emission factors to address lack of data for a specific material or for a specific geographical region. These proxy datasets were chosen for their representativeness of the actual product. Additionally, global data or rest of the word (ROW for short, referred to outside Europe in SimaPro software database) were used when China data were not available.

Technological Coverage

The primary data represent the material consumption and the production of the products under evaluation. Secondary data were chosen to be specific to the technologies in question (or appropriate proxy data used where necessary). For details please refers to "Table 4 Data Sources" above.

2.6.Allocation

Rational modeling approaches are used to allocate the resource and environmental impacts in the complex and diverse product systems. Allocation methods in a way that reflects the underlying physical relationships between the different products are used in this EPD. Details are listed below:

Mass-based allocation: The electricity consumption is allocated based on the proportion
of the target product's production to the company's total production.

2.7.Comparability

No comparisons or benchmarking is included in this EPD. LCA results across EPDs can be calculated with different background databases, modeling assumptions, geographic scope and time periods, all of which are valid and acceptable according to ISO standards. Caution should be used when attempting to compare EPD results.

3. Life Cycle Assessment Results

3.1.Description of the System Boundary

The system boundary the of the product 1 m² Futura PVC Free Resilient Tile Flooring (Type:2.5 mm) is from cradle to gate, including raw material acquisition stage, production stage, and distribution stage. Modules are listed below.

Table 5 Description of the System Boundary Modules

	A: Raw Material		B: Production	C: Distribution	D: Use	E: End-of-life		·life
	Acquisition	on Stage	Stage	Stage	Stage	Stage		
	A1	A2	В	С	D	E1	E2	E3
	Extraction and processing of raw materials	Transportation of raw materials	Product manufacturing	Distribution to client	Product usage	Reuse, recycling, or energy recovery	Landfilled	Incinerated
EPD Type: cradle to gate	V	$\sqrt{}$	V	V	×	×	×	×

3.2.Life Cycle Impact Assessment Results

Table 6 contains a total LAC results for 1 m² Futura PVC Free Resilient Tile Flooring (Type:2.5 mm). For details please refer to Table 7.

Table 6 Total LCA Results

		A: Raw	w Material B: Production		C: Distribution
Environmen	ital Impact	Acquisition	on Stage	Stage	stage
		A1	A2	В	С
ltem	Unit	Extraction and processing of raw materials	Transportation of raw materials	Product manufacturing	Distribution to client
Olahal Massaisas	l	2.04E+00	9.08E-01	0.405.04	4.005.00
Global Warming	kg CO2 eq	2.951	E+00	8.16E-01	1.09E+00

Stratospheric	Va CEC11 oa	1.76E-06	5.93E-07	1.69E-07	7.68E-07	
Ozone Depletion	Kg CFC11 eq	2.36	E-06	1.09E-07	7.00⊑-07	
Terrestrial	kg SO₂ eq	5.50E-03	2.26E-03	2.76E-03	1.88E-02	
Acidification	kg SO ₂ eq	7.77	E-03	2.70E-03	1.00⊑-02	
Freshwater	ka D oa	1.31E-04	1.05E-04	1.86E-05	1.20E-04	
Eutrophication	kg P eq	2.36	E-04	1.00E-05	1.200-04	
Water	m³	1.08E-02	1.84E-03	2.01E-03	1.06E-03	
Consumption	IIIa	1.26E-02		2.01E-03	1.00L=03	
Mineral Resource	ka Cu oa	9.51E-03	2.65E-03	2.92E-04	2.10E-03	
Scarcity	kg Cu eq	1.22E-02		2.92E-04	2.10E-03	
Fossil Resource	ka oil oa	3.92E-01	2.95E-01	1.58E-01	2 225 04	
Scarcity	kg oil eq	6.87E-01		1.36E-01	3.33E-01	
Ozone Formation, terrestrial	ka NO. oa	4.03E-03	2.62E-03	2.27E-03	1.93E-02	
ecosystems	kg NO _x eq	6.64	E-03	2.21 E-03	1.93⊑-02	
Ozone Formation,	kg NOx eq	3.93E-03	2.55E-03	2.26E-03	4.045.00	
human health	kg NOX eq	6.48E-03		2.20E-03	1.91E-02	

Table 7 Detailed LCA Results

Environmental Impact										
System Boundary Modules	Materials, energy, or Other Stage	Global Warming	Stratospheric Ozone Depletion	Terrestrial Acidificatio n	Freshwater Eutrophication	Water Consumptio n	Mineral Resource Scarcity	Fossil Resource Scarcity	Ozone Formation Terrestrial Ecosystems	Ozone Formation Human Health
	- 1119	kg CO ₂ eq	Kg CFC11 eq	kg SO ₂ eq	kg P eq	m ³	kg Cu eq	kg oil eq	kg NO _x eq	kg NOx eq
A1	Biobased Polyester	8.29E-02	1.54E-08	1.44E-04	5.39E-06	3.35E-04	8.19E-04	8.75E-03	1.49E-04	1.45E-04
A1	Modified Functional Resin	3.85E-02	1.35E-08	1.08E-04	1.73E-06	1.77E-04	6.68E-05	8.76E-03	7.66E-05	7.57E-05
A1	Ethylene Copolyme r Resin	2.31E-02	8.08E-09	6.47E-05	1.04E-06	1.06E-04	4.01E-05	5.26E-03	4.60E-05	4.54E-05
A1	Stone Powder	6.67E-01	2.32E-07	2.82E-03	2.61E-05	6.34E-03	5.19E-03	1.92E-01	1.88E-03	1.84E-03
A1	Soybean Oil	5.24E-01	1.24E-06	3.14E-04	6.14E-05	4.11E-04	3.25E-04	9.54E-03	3.13E-04	2.85E-04
A1	PET Membrane	6.90E-01	2.46E-07	1.96E-03	3.35E-05	3.10E-03	1.23E-03	1.61E-01	1.51E-03	1.49E-03
A1	Paint	1.89E-02	6.59E-09	9.32E-05	1.80E-06	3.04E-04	1.84E-03	6.25E-03	5.10E-05	4.98E-05
A2	Lorry 3.5t, euro 6	9.08E-01	5.93E-07	2.26E-03	1.05E-04	1.84E-03	2.65E-03	2.95E-01	2.62E-03	2.55E-03
В	Electricity	8.16E-01	1.69E-07	2.76E-03	1.86E-05	2.01E-03	2.92E-04	1.58E-01	2.27E-03	2.26E-03

С	Lorry>32t, euro 6	2.06E-01	1.52E-07	5.30E-04	2.61E-05	3.95E-04	3.33E-04	7.21E-02	7.24E-04	7.01E-04
С	Freight, container ship	8.87E-01	6.16E-07	1.83E-02	9.40E-05	6.69E-04	1.77E-03	2.61E-01	1.86E-02	1.84E-02

4. Life Cycle Assessment Interpretation

As shown in Table 7 above, raw material transport and shipping of products are the two key contributors to most impact categories considered. This is because the main raw materials for the product 1 m² Futura PVC Free Resilient Tile Flooring (Type:2.5 mm) is waste plastic, therefore, they have a small environmental impact during the production process.

5. References

ISO 14025: Environmental labels and declarations - Type III environmental declarations - Principles and procedures

EN 15804: Sustainability of construction works - Environmental product declarations – Core rules for the product category of construction products

ISO 14040: Environmental management – Life cycle assessment – Principles and framework

ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines